Exercise Three

3.1 Create a new PHP file and within it a new numeric array holding the following
values ... abc, def, ghi, jkl, mno, output the second value in the array ...
Save as c:\courselex3_1.php
def
3.2 Add the rest of the alphabet to the existing array created in ex3_1.php, output a count of the number of arrays and their values ...
Save as c:Icourselex3_2.php

There are 9 array values

$$
\operatorname{array}(9)\{[0]=>\text { string(3) "abc" [1]=> string(3) "def" [2]=> string(3) "ghi" [3]=> }
$$

string(3) "jkl" [4] => string(3) "mno" [5] => string(3) "pqr" [6] => string(3) "stu"

$$
\text { [7]=> string(3) "vwx" [8]=> string(2) "yz" \} }
$$

Exercise Three

3.3 Create an associative array based on the following population figures for UK towns, use the town name as the key ...

London	$7,619,800$
Birmingham	$1,010,400$
Glasgow	637,000
Leeds	477,600
Manchester	465,900
Bristol	465,500
Liverpool	464,200
Sheffield	458,100
Edinburgh	452,200

Print out the population for Sheffield. Save as c:\courselex3_3.php

The population of Sheffield is 458100

Exercise Three

3.4 Manually output the contents of the array created in ex3_3.php, use the technique of current(), next() and key() to produce the following result. Save as ex3_4.php ...

The city of London is 7,619,800
The city of Birmingham is 1,010,400
The city of Glasgow is 637,000
The city of Leeds is 477,600
The city of Manchester is 465,900
The city of Bristol is 465,500
The city of Liverpool is 464,200
The city of Sheffield is 458,100
The city of Edinburgh is 452,200

Exercise Three

3.5 Create a new PHP file and within it create a two dimensional array which effectively recreates the following ... Save as c:\courselex3_5.php

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{0}$	1	2	3	4	5	6	7	8	9	10
$\mathbf{1}$	2	4	6	8	10	12	14	16	18	20
$\mathbf{2}$	3	6	9	12	15	18	21	24	27	30
$\mathbf{3}$	4	8	12	16	20	24	28	32	36	40
$\mathbf{4}$	5	10	15	20	25	30	35	40	45	50
$\mathbf{5}$	6	12	18	24	30	36	42	48	54	60
$\mathbf{6}$	7	14	21	28	35	42	49	56	63	70
$\mathbf{7}$	8	16	24	32	40	48	56	64	72	80
$\mathbf{8}$	9	18	27	36	45	54	63	72	81	90
$\mathbf{9}$	10	20	30	40	50	60	70	80	90	100

Exercise Three

3.5 continued output the following positions in the array ...

$$
\begin{aligned}
& {[5][0]} \\
& {[5][5]} \\
& {[9][9]}
\end{aligned}
$$

The output should be as follows ...

6
36
100

Exercise Three

3.6 Convert the array created in ex3_5 into a string and output it (Hint: Use one dimension (row) at a time) ... Save as c:\courselex3_6.php

123456789102468101214161820369121518212427304812162024283236405101520253
354045506121824303642485460714212835424956637081624324048566472809182736
55463728190102030405060708090100

